31,628 research outputs found

    Dynamic Renormalization Group Approach to Self-Organized Critical Phenomena

    Full text link
    Two different models exhibiting self-organized criticality are analyzed by means of the dynamic renormalization group. Although the two models differ by their behavior under a parity transformation of the order parameter, it is shown that they both belong to the same universality class, in agreement with computer simulations. The asymptotic values of the critical exponents are estimated up to one loop order from a systematic expansion of a nonlinear equation in the number of coupling constants.Comment: 8 pages, RevTeX 3.0, 1 PostScript figure available upon reques

    Stretched exponential relaxation in the Coulomb glass

    Full text link
    The relaxation of the specific heat and the entropy to their equilibrium values is investigated numerically for the three-dimensional Coulomb glass at very low temperatures. The long time relaxation follows a stretched exponential function, f(t)=f0exp[(t/τ)β]f(t)=f_0\exp[-(t/\tau)^\beta], with the exponent β\beta increasing with the temperature. The relaxation time follows an Arrhenius behavior divergence when T0T\to 0. A relation between the specific heat and the entropy in the long time regime is found.Comment: 5 pages and 4 figure

    Synchronization in a ring of pulsating oscillators with bidirectional couplings

    Full text link
    We study the dynamical behavior of an ensemble of oscillators interacting through short range bidirectional pulses. The geometry is 1D with periodic boundary conditions. Our interest is twofold. To explore the conditions required to reach fully synchronization and to invewstigate the time needed to get such state. We present both theoretical and numerical results.Comment: Revtex, 4 pages, 2 figures. To appear in Int. J. Bifurc. and Chao

    The IACOB project: I. Rotational velocities in Northern Galactic O and early B-type stars revisited. The impact of other sources of line-broadening

    Full text link
    Stellar rotation is an important parameter in the evolution of massive stars. Accurate and reliable measurements of projected rotational velocities in large samples of OB stars are crucial to confront the predictions of stellar evolutionary models with observational constraints. We reassess previous determinations of projected rotational velocities (vsini) in Galactic OB stars using a large, high quality spectroscopic dataset, and a strategy which account for other sources of broadening appart from rotation affecting the diagnostic lines We present a versatile and user friendly IDL tool, based on a combined Fourier Transform (FT) + goodness of fit (GOF) methodology, for the line-broadening characterization in OB-type stars. We use this tool to (a) investigate the impact of macroturbulent and microturbulent broadenings on vsini measurements, and (b) determine vsini in a sample of 200 Galactic OB-type stars, also characterizing the amount of macroturbulent broadening (\vmacro) affecting the line profiles. We present observational evidence illustrating the strengths and limitations of the proposed FT+GOF methodology for the case of OB stars. We confirm previous statements (based on indirect arguments or smaller samples) that the macroturbulent broadening is ubiquitous in the massive star domain. We compare the newly derived vsini with previous determinations not accounting for this extra line-broadening contribution, and show that those cases with vsini< 120 km/s need to be systematically revised downwards by ~25 (+/-20) km/s. We suggest that microturbulence may impose an upper limit below which vsini and \vmacro\ could be incorrectly derived by means of the proposed methodology as presently used, and discuss the implications of this statement on the study of relatively narrow line massive stars.Comment: Accepted for publication in A&A (19 pages, 15 figures, 6 tables). Tables A1-A5 will be make available in the final edited version of the paper (or under request to SS-D
    corecore